a

Sains Malaysiana 54(5)(2025): 1375-7392

http://doi.org/10.17576/jsm-2025-5405-14

 

Biosensor Berasaskan Sel E. coli Terubahsuai Protein Pendarfluor Hijau (GFP E. coli) Terpegun Mikrosfera Alginat untuk Pengukuran Ketoksikan Air

(Biosensor Based on Green Fluorescent Protein-Modified E. coli(GFP E. coli) Cells-Immobilised Alginate Microspheres for Water Toxicity Measurements)

 

DEDI FUTRA1,2, LING LING TAN3, SALMIJAH SURIF1 & LEE YOOK HENG1,*

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor, Malaysia

2Department of Chemistry Education, Faculty of Education, Universitas Riau,

Kampus Binawidya KM 12.5 Pekanbaru, 28131, Riau, Indonesia

3Pusat Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam Sekitar dan

Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 25 October 2024/Accepted: 29 December 2024

 

Abstrak

Biosensor ketoksikan optik telah direka bentuk berasaskan mikroorganisma sel keseluruhan terpegun iaitu strain DH5α Escherichia coli terubah suai protein pendarfluor hijau (GFP E. coli) dalam mikrosfera alginat melalui mikroenkapsulasi untuk pengesanan bahan toksik, seperti logam berat [Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) dan Fe(III)], racun rumpai [2,4-asid diklorofenoksiasetik (2,4-D)] dan racun serangga (klorpirifos). Biosensor bakteria yang teguh dan mudah alih telah dicirikan dengan kaedah spektrofluorimetrik gentian optik. Kehadiran bahan pencemar alam sekitar telah mengubah ciri aruhan pendarfluor GFP E. coli dan mengakibatkan perubahan fotokimia. Rangsangan biosensor diukur pada panjang gelombang pengujaan dan pemancaran pendarfluor optimum masing-masing pada 400±2 nm dan 485±2 nm. Had pengesanan (LOD) biosensor untuk logam berat, racun rumpai dan racun serangga diperoleh masing-masing pada 0.06-2900.00 μg/L, 0.07 μg/L dan 36.50 μg/L. Ujian kebolehulangan biosensor menunjukkan sisihan piawai relatif (RSD) purata pada <5.0% dan rangsangan biosensor adalah stabil sehingga enam minggu. Biosensor memberikan ransangan perencatan terhadap toksik tunggal dalam susunan Cu(II)>klorpirifos>Cd(II)>Pb(II)>Zn(II)>2,4-D>Cr(VI)>Co(II)>Ni(II)> Ag(I)>Fe(III). Biosensor mikrob yang dibangunkan menunjukkan rangsangan antagonis untuk campuran ketoksikan dan ia boleh mengukur kehadiran bahan toksik campuran ini pada tahap antagonis 86-100%. Biosensor gentian optik berasaskan mikrosfera alginat telah dicirikan untuk pengesanan tahap pencemaran toksik dalam sampel air persekitaran. Keputusan penentusahan yang diperoleh menggunakan mikrosfera alginat terubah suai GFP E. coli adalah setanding dengan keputusan yang diperoleh menggunakan kaedah spektroanalisis seperti spektroskopi serapan atom (AAS) dan kromatografi gas-spektroskopi jisim (GC-MS).

Kata kunci: biosensor gentian optik; biosensor sel keseluruhan; GFP E. coli; logam berat; mikrosfera alginat

 

Abstract

An optical toxicity biosensor has been designed based on immobilised whole-cell microorganisms i.e., green fluorescent protein-modified DH5α strain of Escherichia coli (GFP E. coli) in the alginate microspheres via microencapsulation for detection of toxicants, such as heavy metals [Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I), and Fe(III)], herbicide [2,4-dichlorophenoxyacetic acid (2,4-D)], and insecticide (chlorpyrifos). The robust and mobile bacterial biosensor was characterised with the fiber optic spectrofluorimetric method. The presence of environmental pollutants altered the GFP E. coli fluorescence induction characteristic and resulted in photochemical changes. The biosensor response was measured at optimal fluorescence excitation and emission wavelengths at 400±2 nm and 485±2 nm, respectively.  The limit of detections (LOD) of the biosensor for heavy metals, herbicide, and insecticide were found to be 0.06-2900 μg/L, 0.07 μg/L, and 36.5 μg/L, respectively. The reproducibility test of the biosensor showed an average relative standard deviation (RSD) of <5.0% and the biosensor response was stable for up to six weeks. The biosensor gave inhibition response toward single toxicant in the order of Cu(II)>chlorpyrifos>Cd(II)>Pb(II)>Zn(II)>2,4-D>Cr(VI)>Co(II)>Ni(II) >Ag(I)>Fe(III). The developed microbial biosensor showed antagonistic results for toxicity mixture, whereby it can quantify the presence of these mixed toxicants at 86–100% antagonistic level. The alginate microspheres-based optical fiber biosensor has been characterised for the detection of toxicant contamination levels in environmental water samples. The validation results obtained using GFP E. coli-modified alginate microspheres were in good agreement with those obtained using spectroanalytical methods e.g., atomic absorbance spectroscopy (AAS) and gas chromatography-mass spectroscopy (GC-MS).

Keywords: Alginate microspheres; GFP E. coli; heavy metal; optical fiber biosensor; whole cell biosensor

 

REFERENCES

Abasalizadeh, F., Moghaddam, S.V., Alizadeh, E., Akbari, E., Kashani, E., Fazljou, S.M.B., Torbati, M. & Akbarzadeh, A. 2020. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering 14: 8. https://doi.org/10.1186/s13036-020-0227-7

Ahmed, S.A. 2008. Invertase production by Bacillus macerans immobilized on calcium alginate beads. Journal of Applied Sciences 4(12): 1777-1781.

Arias-Barreiro, C.R., Okazaki, K., Koutsaftis, A., Inayat-Hussain, S.H., Tani, A., Katsuhara, M., Kimbara, K. & Mori, I.C. 2010. A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Sensors 10(7): 6290-6306. doi: 10.3390/s100706290

Broerse, M. & Gestel, C.A.M.V. 2020. Mixture effects of nickel and chlorpyrifos on Folsomia candida (Collembola) explained from development of toxicity in time. Chemosphere 79(9): 953-957. doi: 10.1016/j.chemosphere.2010.02.032

Brown, J.Q., Srivastava, R. & McShane, M.J. 2005. Encapsulation of glucose oxidase and an oxygen-quenched fluorophore in poly-electrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosensors and Bioelectronics 21(1): 212-216. https://doi.org/10.1016/j.bios.2004.08.020

Cano-Vicent, A., Tuñón-Molina, A., Bakshi, H., Serra, R.S.I., Alfagih, I.M., Tambuwala, M.M. & Serrano-Aroca, A. 2023. Biocompatible alginate film crosslinked with Ca2+ and Zn2+ possesses antibacterial, antiviral, and anticancer activities. ACS Omega 8(27): 24396-24405. https://doi.org/10.1021/acsomega.3c01935

Chakraborty, T., Babu, P.G., Alam, A. & Chaudhari, A. 2008. GFP expressing bacterial biosensor to measure lead contamination in aquatic environment. Current Science 94(6): 800-805.

Chan, L.W. Jin, Y. & Heng, P.W.S. 2002. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. International Journal of Pharmaceutics 242(1-2): 255-258. https://doi.org/10.1016/S0378-5173(02)00169-2

Chen, S., Chen, X., Su, H., Guo, M. & Liu, H. 2023. Advances in synthetic-biology-based whole-cell biosensors: Principles, genetic modules, and applications in food safety. International Journal of Molecular Sciences 24(9): 7989.  doi10.3390/ijms24097989

Cui, Z., Luan, X., Jiang, H., Li, Q., Xu, G., Sun, C., Song, Y., Davison, P.A. & Huang, W.E. 2018. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere 200: 322-329. doi: 10.1016/j.chemosphere.2018.02.097 

Dawson, J.J.C., Campbell, C.D., Towers, E., Cameron, C.M. & Paton, G.I. 2006. Linking biosensor responses to Cd, Cu, and Zn partitioning in soils. Environmental Pollution 142(3): 493-500. https://doi.org/10.1016/j.envpol.2005.10.029

Deng, X., Xia, Y., Hu, W., Zhang, H. & Shen, Z. 2010. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L. Journal of Hazardous Materials 180(1-3): 722-729. doi: 10.1016/j.jhazmat.2010.04.099

Echeverri-Jaramillo, G., Jaramillo-Colorado, B., Sabater-Marco, C. & Castillo-López, M.A. 2020. Acute toxicity of chlorpyrifos and its metabolite 3, 5, 6-trichloro-2-pyridinol alone and in combination using a battery of bioassays. Environmental Science and Pollution Research 27(26): 32770-32778. doi: 10.1007/s11356-020-09392-x

Futra, D., Lee, Y.H., Surif, S., Musa, A. & Tan, L.L. 2014. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Sensors 14(12): 23248-23268. https://doi.org/10.3390/s141223248

Guler, M., Turkoglu, V. & Basi, Z. 2017. Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetyl-cholinesterase biosensor based on Nafion/Ag@ rGO-NH2 nanocomposites. Electrochimica Acta 240: 129-135. https://doi.org/10.1016/j.electacta.2017.04.069

Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y. & Remington, S.J. 2004. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. Journal of Biological Chemistry 279(13): 13044-13053. doi: 10.1074/jbc.M312846200

He, J., Zhang, X., Qian, Y., Wang, Q. & Bai, Y. 2022. An engineered quorum-sensing-based whole-cell biosensor for active degradation of organophosphates. Biosensors and Bioelectronics 206: 114085. doi: 10.1016/j.bios.2022.114085

Hu, N. & Sun, H. 2019. A biosensor for hydrogen peroxide based on myoglobin immobilized on calcium alginate microspheres. Material Sciences 9(2): 170-176. doi:10.12677/MS.2019.92022

Jain, M., Yadav, P., Joshi, B., Joshi, A. & Kodgire, P. 2021. Recombinant organophosphorus hydrolase (OPH) expression in E. coli for the effective detection of organophosphate pesticides. Protein Expression and Purification 186: 105929. doi: 10.1016/j.pep.2021.105929

Katsanakis, N., Katsivelis, A. & Kintzois, S. 2009. Immobilization of electroporated for fabrication cellular biosensors; physiological effect of the shape of calcium alginate matrices and foetal calf serum. Sensors 9(1): 378-385. doi: 10.3390/s90100378

Khattab, T.A., Fouda, M.M., Abdelrahman, M.S., Othman, S.L., Bin-Jumah, M., Alqaraawi, M.A., Fassam, H.A. & Allam, A.A. 2019. Co-encapsulation of enzyme and tricyanofuran hydrazone into alginate microcapsules incorporated onto cotton fabric as a biosensor for colorimetric recognition of urea. Reactive and Functional Polymers 142: 199-206. https://doi.org/10.1016/j.reactfunctpolym.2019.06.016

Khatun, M.A., Hoque, M.A., Zhang, Y., Lu, T., Cui, L., Zhou, N.Y. & Feng, Y. 2018. Bacterial consortium-based sensing system for detecting organophosphorus pesticides. Analytical Chemistry 90(17): 10577-10584. doi: 10.1021/acs.analchem.8b02709

Kim, B.C. & Gu, M.B. 2003. A bioluminescent sensor for high throughput toxicity classification.  Biosensors and Bioelectronics 18(8): 1015-1021. doi: 10.1016/s0956-5663(02)00220-8

Kumar, A., Kothari, A., Kumar, P., Singh, A., Tripathi, K., Gairolla, J., Pai, M. & Omar, B.J. 2023. Introduction to Alginate: Biocompatible, Biodegradable, Antimicrobial Nature and Various Applications. United Kindom: IntechOpen Limited. doi: 10.5772/intechopen.110650

Lindahl, P.A. 2012. Metal–metal bonds in biology. Journal of Inorganic Biochemistry 106(1): 172-178. doi: 10.1016/j.jinorgbio.2011.08.012

Martinez, A.R., Heil, J.R. & Charles, T.C. 2019. An engineered GFP fluorescent bacterial biosensor for detecting and quantifying silver and copper ions. Biometals 32(2): 265-272. doi: 10.1007/s10534-019-00179-3 

Mohseni, M., Abbaszadeh, J., Maghool, S.S. & Chaichi, M.J. 2018. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea. Ecotoxicology and Environmental Safety 148: 555-560. https://doi.org/10.1016/j.ecoenv.2017.11.002

Momplaisir, G., Rosal, C.G., Heithmar, E.M., Varner, K.E., Riddick, L.A., Bradford, D.F. & Tallent-Halsell, N.G. 2010. Development of a solid phase extraction method for agricultural pesticides in large-volume water samples. Talanta 81(4-5): 1380-1386. doi: 10.1016/j.talanta.2010.02.038

Moraskie, M., Roshid, M.H.O., O’Connor, G., Dikici, E., Zingg, J., Deo, S. & Daunert, S. 2021. Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosensors and Bioelectronics 191: 113359. https://doi.org/10.1016/j.bios.2021.113359

Nourmohammadi, E., Hosseinkhani, S., Nedaeinia, R., Khoshdel-Sarkarizi, H., Nedaeinia, M., Ranjbar, M., Ebrahimi, N., Farjami, Z., Nourmohammdi, M., Mahmoudi, A., Goli, M., Ferns, G.A. & Sadeghizadeh, M. 2020. Construction of a sensitive and specific lead biosensor using a genetically engineered bacterial system with a luciferase gene reporter controlled by pbr and cadA promoters. Biomedical Engineering Online 19(1): 79. doi: 10.1186/s12938-020-00816-w

Ooi, L., Lee, Y.H. & Mori, I.C. 2015. A high-throughput oxidative stress biosensor based on Escherichia coli roGFP2 cells immobilized in a k-carrageenan matrix. Sensors 15(2): 2354-2368. doi: 10.3390/s150202354

Phoong, S.Y. & Phoong, S.W. 2021. Inferential Statistics: Hypothesis Testing, Quantitative Data Analysis Using SPSS Statistic. Malaysia: Malaysian Scholarly Publishing Council.

Prasad, J., Joshi, A., Jayant, R.D. & Srivastava, R. 2011. Cholesterol biosensors based on oxygen sensing alginate-silica microspheres. Biotechnology and Bioengineering 108:  2011-2021. doi: 10.1002/bit.23143

Rathnayake, I.V.N., Megharaj, M. & Naidu, R. 2021. Green fluorescent protein based whole cell bacterial   biosensor for the detection of bioavailable heavy metals in soil environment. Environmental Technology & Innovation 23: 101785. https://doi.org/10.1016/j.eti.2021.101785

Raus, R.A., Nawawi, F.M.F.W. & Nasaruddin, R.R. 2021. Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences 16(3): 280-306. https://doi.org/10.1016/j.ajps.2020.10.001

Ritcharoon, B., Sallabhan, R., Toewiwat, N., Mongkolsuk, S. & Loprasert, S. 2020. Detection of 2,4-dichlorophenoxyacetic acid herbicide using a FGE-sulfatase based whole-cell Agrobacterium biosensor. Journal of Microbiological Methods 175: 105997. doi: 10.1016/j.mimet.2020.105997

Rosochacki, S.J. & Matejczyk, M. 2002. Green fluorescent protein as a molecular marker in microbiology. Acta Microbiologica Polonica 51(3): 205-216.

Sahoo, D.R. & Biswal, T. 2021. Alginate and its application to tissue engineering. SN Applied Sciences 3: 30. https://doi.org/10.1007/s42452-020-04096-w

Schmitz, R.P.H., Eisentrager, A. & Dott, W. 1999. Agonistic and antagonistic toxic effect observed with miniaturized growth and luminescence inhibition assays. Chemosphere 38(1): 79-95. doi: 10.1016/s0045-6535(98)00175-1

Serrano, N., Sestakova, I., Dıaz-Cruz, J.M. & Arino, C. 2006. Adsorptive accumulation in constant current stripping chronopotentiometry as an alternative for the electrochemical study of metal complexation by thiol-containing peptides. Journal of Electroanalytical Chemistry 591(1): 105-117. https://doi.org/10.1016/j.jelechem.2006.03.038

Silva, C.M., Ribeiro, A.J., Figueiredo, I.V., Goncalves, A.R. & Veiga, F. 2006. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. International Journal of Pharmaceutics 311(1-2): 1-10. doi: 10.1016/j.ijpharm.2005.10.050

Silva, L.C., Moreira, R.A., Pinto, T.J., Ogura, A.P., Yoshii, M.P., Lopes, L.F., Montagner, C.C., Goulart, B.V., Daam, M.A. & Espindola, E.I. 2020. Acute and chronic toxicity of 2, 4-D and fipronil formulations (individually and in mixture) to the Neotropical cladoceran Ceriodaphnia silvestrii. Ecotoxicology 29(9): 1462-1475. doi: 10.1007/s10646-020-02275-4

Sorensen, S.J., Burmolle, M. & Hansen, L.H. 2006. Making bio-sense of toxicity: New developments in whole-cell biosensors. Current Opinion in Biotechnology 17(1): 11-16. doi:10.1016/j.copbio.2005.12.007

Sumner, J., Westberg, N.M., Stoddard, A.K., Hurst, T.K., Cremer, M., Thompson, R.B., Fierke, C.A. & Kopelman, R. 2006. DsRed a highly sensitive, selective and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. Biosensors and Bioelectronics 21(7): 1302-1308. doi: 10.1016/j.bios.2005.04.023

Valenzuela-García, L.I., Alarcón-Herrera, M.T., Ayala-García, V.M., Barraza-Salas, M.,  Salas-Pacheco, J.M., Díaz-Valles, J.F. & Pedraza-Reyes, M. 2023. Environmental Microbiology 11(4): e00432-23. doi: https://doi.org/10.1128/spectrum.00432-23

Vopálenská, I., Váchová, L. & Palková, Z. 2015. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosensors and Bioelectronics 72: 160-167. doi: 10.1016/j.bios.2015.05.006

Wang, G.H., Cheng, C.Y., Tsai, T.H., Chiang, P.K. & Chung, Y.C. 2021. Highly sensitive luminescent bioassay using recombinant Escherichia coli biosensor for rapid detection of low Cr (VI) concentration in environmental water. Biosensors 11(10): 357. https://doi.org/10.3390/bios11100357

Whangsuk, W., Thiengmag, S., Dubbs, J., Mongkolsuk, S. & Loprasert, S. 2016. Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Analytical Biochemistry 493: 11-13. https://doi.org/10.1016/j.ab.2015.09.022

Wu, Y., Wang, C., Wang, D. & Wei, N. 2021.  A whole-cell biosensor for point-of-care detection of waterborne bacterial pathogens. ACS Synthetic Biology 10(2): 333-344. https://doi.org/10.1021/acssynbio.0c00491

Yu, D., Bai, L., Zhai, J., Wang, Y. & Dong, S. 2017. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta 168: 210-216. https://doi.org/10.1016/j.talanta.2017.03.048

Yu, D., Zhang, H., Bai, L., Fang, Y., Liu, C., Zhang, H., Li, T., Han, L., Yu, Y., Hongwen, Y. &  Dong, S. 2020. Visual detection of the toxicity of wastewater containing heavy metal ions using a microbial fuel cell biosensor with a Prussian blue cathode. Sensors and Actuators B: Chemical 302: 127177. https://doi.org/10.1016/j.snb.2019.127177

Zevallos-Aliaga, D., Graeve, S.D., Obando-Chavez, P., Vaccari, N.A., Gao, Y., Peeters, T. & Guerra, D.G. 2024. Highly sensitive whole-cell mercury biosensors for environmental monitoring. Biosensors 14(5): 246. https://doi.org/10.3390/bios14050246

 

*Corresponding author; email: leeyookheng@yahoo.co.uk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next